Magatzem Mètodes II

Magatzem Mètodes II

Mapa Mental Xulíssim
 

Paritat de funcions

Perquè són tan xules les funcions simmètriques (parells i imparells) al integrar?
Video preview
Propietats que compleixen:
notion image
Exemples per determinar fàcil si una funció és parell, imparell o cap de les dos:
Video preview
Escriure una funció com a part parell i part imparell (per després fer les integrals):
Video preview
📍
Per més informació veure
Paritat de funcions
Paritat de funcions
.

Overview d’equacions diferencials en la física

Video preview

Introducció

Physics Students Need to Know These 5 Methods for Differential Equations
Differential equations are hard! But these 5 methods will enable you to solve all kinds of equations that you'll encounter throughout your physics studies. Get the notes for free here: https://courses.physicswithelliot.com/notes-sign-up Sign up for my newsletter for additional physics lessons: https://www.physicswithelliot.com/sign-up Almost every physics problem eventually comes down to solving a differential equation. But differential equations are really hard! Fortunately, there are powerful tools for tackling them, and in this video I'll introduce you to five of them: substituting an ansatz, using energy conservation, making a series expansion, using the Laplace transform, and finally using Hamilton's equations, which give a new way to visualize the solution as what's called a flow on phase space, as well as a way to solve an equation with a matrix exponential. We'll see how they all work using one of the most important differential equations in physics: the F=ma equation for a simple harmonic oscillator, or in other words a block attached to a spring. You certainly don't need crazy powerful tools to solve such a simple equation, but seeing how they work in a simple problem will help prepare you for the harder problems you'll inevitably meet later on in physics! Related videos: All about the simple harmonic oscillator, and why it's so important: https://youtu.be/bmGqhM-tUk4 The Fourier transform, with applications to quantum mechanics: https://youtu.be/W8QZ-yxebFA The math and physics of Taylor series: https://youtu.be/HQsZG8Yxb7w 0:00 Introduction 2:20 The equation 4:01 1: Ansatz 9:10 2: Energy conservation 14:17 3: Series expansion 18:23 4: Laplace transform 22:41 5: Hamiltonian Flow 26:48 Matrix Exponential 29:31 Wrap Up If you find the content I’m creating valuable and would like to help make it possible for me to continue sharing more, please consider supporting me! You can make a recurring contribution at https://www.Patreon.com/PhysicsWithElliot, or make a one time contribution at https://www.physicswithelliot.com/support-me. Thank you so much! About me: I’m Dr. Elliot Schneider. I love physics, and I want to help others learn (and learn to love) physics, too. Whether you’re a beginner just starting out with your physics studies, a more advanced student, or a lifelong learner, I hope you’ll find resources here that enable you to deepen your understanding of the laws of nature. For more cool physics stuff, visit me at https://www.physicswithelliot.com.
Physics Students Need to Know These 5 Methods for Differential Equations

Singularitats, pols...

Video preview

Producte de Convolució

Equació de Calor

Video preview

Funcions com a vectors - Ortogonalitat

Video preview

Funció de Green

Equació de Laplace

PDEs vàries

Video preview

Strum Liouville

Video preview