V(x) = Vo —> Partícula lliure —> —> No normalitzable —> No pot representar un estat físic —> Necessitem una nova interpretació
Interpretació física: Paquets d’ona
—> Velocitat de grup i de fase
Interpretació matemàtica: Funció d’ona restringida en un pou de potencial infinit
—> ,
—> Cada valor propi està degenerat 2 vegades
In contrast with the infinite well case, for the free particle system we don't have boundary conditions on the wavefunction, and therefore the energy E
can take any positive value: the only contribution to the total energy
is the kinetic energy, which is positive-definite. So in the case of the free particle system the energy is not quantised and can take a continuum of values.
The way to find physical wavefunctions is to combine solutions with different energies. In such case, Δp will take a finite value and hence Δx can be finite as well. And if a particle is localised, one will be able to construct normalisable wave functions.
“In the case of a quantum system like the free particle, one should replace a sum by an integral.”
Most general wavefunction for a free particle —> wave packet
“Note that the wave packet itself does not have a unique energy of wavelenght.”
Using the property of ortogonalithy:
Bla bla bla, we therefore find that the function ϕ(k) is given by:
Osigui, la transformada de Fourier
—> Aahhh aleshores allo de notació correcta és només per una free particle??
Wave packet
Consider free particle with the following wave function at t=0:
Where A and a are real and positive constants. We would like to find the function $\phi(k)$ that defines the wave packet leading to $\Psi(x, 0)$ and determine how the properties of the resulting wave packet vary with time.
- First of all, we want to normalize $\Psi(x, 0)$, that is, find the value of the constant $A$
Note that here I will take $A$ to be real, but we could have always multiplied it by an arbitrary complex phase.
- Next we want to evaluate the function $\phi(k)$ that ensures the desired Gaussian profile of the wave packet:
Where we have used the following result for definite Gaussian integrals
- Now that we have found ϕ(k) and the normalisation constant A, we can determine the time evolution of the wave packet: